

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2023

Marking Scheme

Applied Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

In considering this marking scheme for the written examination, the following points should be noted.

1. The marking scheme shows one correct solution to each question. In many cases there are other equally valid methods. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
2. The detail required in any answer is determined by the context and manner in which the question is asked, and also by the number of marks assigned to the answer in the examination paper. Therefore, in any instance, it may vary from year to year.
3. A solidus (/) indicates different valid attempts.
4. A number of different types of penalties are applied to candidates' work, including:

- mathematical error ("blunder") -3
- mathematical/numerical slip
- misreading (if not serious or leading to oversimplification)

5. A misreading or slip or omission which oversimplifies the question may be regarded as equivalent to a mathematical error and is marked accordingly.
6. In cases where a question item is marked using a marking scale, the scale is provided in bold. For a 20 mark item marked using a marking scale:

- 17 marks are awarded where candidate work shows one systemic error.
- 14 marks are awarded where candidate work shows two systemic errors.
- 8 marks are awarded where a valid attempt is presented which cannot be awarded higher marks.

For a 15 mark item marked using a marking scale:

- 12 marks are awarded where candidate work shows one systemic error.
- 9 marks are awarded where candidate work shows two systemic errors.
- 6 marks are awarded where a valid attempt is presented which cannot be awarded higher marks.

For a 10 mark item marked using a marking scale:

- 7 marks are awarded where candidate work shows one systemic error.
- 4 marks are awarded where candidate work shows two systemic errors or where a valid attempt is presented which cannot be awarded higher marks.

7. A zero should only be recorded when the candidate has attempted the question item but does not merit marks. If a candidate does not attempt a question item examiners should record NR.
8. Examiners are expected to annotate parts of the responses as directed at the marking conference. (See below.)

Symbol	Name	Use
\circledast	Cross	Incorrect element
-	Tick	Correct element
S	Slip	Deduct one mark
2	Box 2	Partially correct element - award 2 marks
\wedge	\wedge	Missing element
\sim	Horizontal wavy line	To be noticed
\}	Vertical wavy line	Additional page

9. Bonus marks at the rate of 5% of the marks obtained will be given to a candidate who answers the written examination paper entirely through Irish and who obtains 75% or less of the total mark available (i.e. 300 marks or less). In calculating the bonus to be applied decimals are always rounded down, not up \neg e.g., 4.5 becomes $4 ; 4.9$ becomes 4 , etc. See below for when a candidate is awarded more than 300 marks in the written examination paper.

Marcanna Breise as ucht freagairt trí Ghaeilge

Léiríonn an tábla thíos an méid marcanna breise ba chóir a bhronnadh ar iarrthóirí a ghnóthaíonn níos mó ná 75% d'iomlán na marcanna.
N.B. Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d’iomlán na marcanna don scrúdú. Ba chóir freisin an marc bónais sin a shlánú síos.

Tábla 400 @ 5\%
Bain úsáid as an tábla seo i gcás na n-ábhar a bhfuil 400 marc san iomlán ag gabháil leo agus inarb é 5% gnáthráta an bhónais.

Bain úsáid as an ngnáthráta i gcás 300 marc agus faoina bhun sin. Os cionn an mharc sin, féach an tábla thíos.

Bunmharc	Marc Bónais
$301-306$	14
$307-313$	13
$314-320$	12
$321-326$	11
$327-333$	10
$334-340$	9
$341-346$	8
$347-353$	7

Bunmharc	Marc Bónais
$354-360$	6
$361-366$	5
$367-373$	4
$374-380$	3
$381-386$	2
$387-393$	1
$394-400$	0

1(a) (i)

10 [0/4/7]

1(a) (ii)
e.g. $B \rightarrow C \rightarrow D \rightarrow F \rightarrow B \quad / B \rightarrow C \rightarrow B \quad / B \rightarrow C \rightarrow A \rightarrow B \quad$ etc.

1(a) (iii)
in a directed graph the edges have direction /
in an undirected graph the edges do not have an arrow

1(b) (i)
$\int d s=\int 2 t e^{-t} d t$
Let $u=2 t$ and let $d v=e^{-t} d t$
$d u=2 d t$ and $v=-e^{-t}$
$\int u d v=u v-\int v d u$, so $\int 2 t e^{-t} d t=-2 t e^{-t}+2 \int e^{-t} d t$
$=-2 t e^{-t}-2 e^{-t}=-2 e^{-t}(t+1)$
$s=-2 e^{-t}(t+1)+c$, so $0=-2+c$, i.e. $c=2$
$s=-2 e^{-t}(t+1)+2$

1(b) (ii)
$s(3)=-2 e^{-3}(3+1)+2=1.60$ to 2 decimal places

2(a)
$X: A(3400), B(2500), C(1250)$
$C: B(2150), F(5150)$
$B: F(4300), G(6350)$
$A: D(6050), E(4200)$
E: D(5950)
F: H(5900), I(6500)
D: G(6600), J(8950)
H: G(7250), $1(7700)$
$G: K(8850)$
I: $K(9850), L(11250)$
$K: J(10750), L(9800)$
$J: M(9900)$
$L: Y(12100), N(11750)$
$M: Y(11450)$
Path $=X \rightarrow A \rightarrow E \rightarrow D \rightarrow J \rightarrow M \rightarrow Y \quad$ Cost $=€ 11450$
20 [0/8/14/17]
2(b)

		before impact $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	after impact $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	
P	m	$4 \cos \alpha \vec{\imath}+4 \sin \alpha \vec{\jmath}$	$v_{1} \vec{\imath}+4 \sin \alpha \vec{\jmath}$	
	$2.4 \vec{\imath}+3.2 \vec{\jmath}$	$v_{1} \vec{\imath}+3.2 \vec{\jmath}$		
Q	$2 m$	$0 \vec{\imath}+3.2 \vec{\jmath}$	$v_{2} \vec{\imath}+3.2 \vec{\jmath}$	5

PCM $\quad m(2.4)+2 m(0)=m\left(v_{1}\right)+2 m\left(v_{2}\right)$
$v_{1}+2 v_{2}=2.4$

NEL
$v_{1}-v_{2}=-2.4 e$
5
$v_{1}=0.8(1-2 e)$
$v_{2}=0.8(1+e)$
$v_{P}=0.8(1-2 e) \vec{\imath}+3.2 \vec{\jmath}$
$v_{Q}=0.8(1+e) \vec{\imath}+3.2 \vec{\jmath}$
5, 5

3 (i)

3 (ii)
$T \sin \alpha=m r \omega^{2}$
$r=3.5+4.3 \sin \alpha$
$T \cos \alpha=m g$
dividing: $\tan \alpha=\frac{(3.5+4.3 \sin \alpha) \omega^{2}}{g}$, i.e. $\omega=\sqrt{\frac{g \tan \alpha}{3.5+4.3 \sin \alpha}}$

3 (iii)
$\sqrt{\frac{\mathrm{m} \mathrm{s}^{-2}}{\mathrm{~m}}}=\sqrt{\mathrm{s}^{-2}}=\mathrm{s}^{-1}$ which are the units for ω

3 (iv)

when $\alpha=25^{\circ}, \omega=\sqrt{\frac{g \tan 25^{\circ}}{3.5+4.3 \sin 25^{\circ}}}=0.927(\mathrm{rad}) \mathrm{s}^{-1}$
$T^{\prime}=\frac{2 \pi}{\omega}=6.78 \mathrm{~s}$
$\frac{60}{T^{\prime}}=8.85=9$ rotations in one minute, to the nearest whole number (or 8 complete revolutions) 5

3 (v)
$s=u t+\frac{1}{2} a t^{2}$ so $4.9 t^{2}-4 t-6=0$
i.e. $t=1.59 \mathrm{~s}$ to 2 decimal places, $t>0$

4 (i)
$B=4 W \overbrace{W=m g}$

4 (ii)
$F=m a=W-4 W-F_{D}=-3 m g-m v^{2}$ so $a=\frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}=v \frac{d v}{d s}=-3 g-v^{2}$

4 (iii)

$\int \frac{v d v}{29.4+v^{2}}=-\int d s$ 5
$\int d s=-s+c$ 5

Let $u=29.4+v^{2}$, so $d u=2 v d v \therefore \int \frac{v d v}{29.4+v^{2}}=\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|=\frac{1}{2} \ln \left(29.4+v^{2}\right)$
$v=15$ when $s=0$ so $c=\frac{1}{2} \ln 254.4$
$\ln \frac{29.4+v^{2}}{254.4}=-2 s$ so $\frac{29.4+v^{2}}{254.4}=e^{-2 s}$, i.e. $v=\sqrt{254.4 e^{-2 s}-29.4} \mathrm{~m} \mathrm{~s}^{-1}$

4 (iv)

$v=0$ so $e^{-2 D}=\frac{29.4}{254.4}$
$D=1.08 \mathrm{~m}$ to 2 decimal places

4 (v)

4 (vi)

$\frac{d v}{d t}\left[=v \frac{d v}{d s}\right]=3 g-v^{2}=29.4-v^{2}$

5(a) (i)

5(a) (ii)
$R_{1}=6.3 \mathrm{~g} \cos 25^{\circ}$ and $R_{2}=2.5 \mathrm{~g}$
$6.3 g \sin 25^{\circ}-T-1.26 g \cos 25^{\circ}=6.3 a$
$T-0.5 g=2.5 a$
$6.3 g \sin 25^{\circ}-1.26 g \cos 25^{\circ}-0.5 g=6.3 a+2.5 a=8.8 a$
$8.8 a=10.00$ so $a=1.14 \mathrm{~m} \mathrm{~s}^{-2}$ to 2 decimal places

5(b)

$s_{M}=s_{T}$ and $T_{M}=T_{T}+140$
$s_{M}=s_{1}+s_{2}+s_{3}$ and $T_{M}=t_{1}+t_{2}+t_{3}$
$s_{T}=s_{4}+s_{5}+s_{6}$ and $T_{T}=t_{4}+t_{5}+t_{6}$
$a_{1}=\frac{22.5}{40}=0.5625$
$s_{M}=[450]+[10800]+\left[s_{3}\right]$
$T_{M}=40+480+t_{3}$
$v_{1}=u_{2}=1.5 \times 20=30$ so $s_{T}=[300]+[10800]+\left[s_{6}\right]$
$T_{T}=20+360+t_{6}$
$40+480+t_{3}=20+360+t_{6}+140$, i.e. $t_{3}=t_{6}=t$
$a_{3}=-\frac{22.5}{t}$ so $0^{2}=22.5^{2}-\frac{45 s_{3}}{t}$, i.e. $s_{3}=11.25 t$
$a_{6}=-\frac{30}{t}$ so $0^{2}=30^{2}-\frac{60 s_{6}}{t}$, i.e. $s_{6}=15 t$
$\therefore 450+10800+11.25 t=300+10800+15 t$, i.e. $t=40 \mathrm{~s}$
$T_{T}=20+360+40=7$ minutes
Áine leaves her house at 08: 23

6 (i)

$U_{2}=2 U_{1}+3 U_{0}=2(2)+3(1)=4+3=7$ [pups]
$U_{3}=2 U_{2}+3 U_{1}=2(7)+3(2)=14+6=20$ [pups]

6 (ii)

$U_{n+2}=2 U_{n+1}+3 U_{n}$ i.e. $U_{n+2}-2 U_{n+1}-3 U_{n}=0$
$x^{2}-2 x-3=0$ i.e. $(x-3)(x+1)=0$ i.e. $x=3$ or $x=-1$
$U_{n}=\alpha 3^{n}+\beta(-1)^{n}$
$U_{0}=1$ so $\alpha+\beta=1$ and $U_{1}=2$ so $3 \alpha-\beta=2$
$\alpha=\frac{3}{4}$ and $\beta=\frac{1}{4}$, i.e. $U_{n}=\frac{3}{4} 3^{n}+\frac{1}{4}(-1)^{n}$

6 (iii)

$U_{10}=\frac{3}{4} 3^{10}+\frac{1}{4}(-1)^{10}=44287$ [pups]

6 (iv)

$V_{n+2}=2 V_{n+1}+3 V_{n}-2(n+2)$ has a particular solution of the form $f(n)=a n+b$
$f(n+2)=2 f(n+1)+3 f(n)-2 n-4$
$a n+2 a+b=2 a n+2 a+2 b+3 a n+3 b-2 n-4$ i.e. $2 a n+2 b=n+2$ for all n
$a=\frac{1}{2}$ and $b=1$
$\alpha=\frac{1}{8}$ and $\beta=-\frac{1}{8}$, i.e. $V_{n}=\frac{1}{8} 3^{n}-\frac{1}{8}(-1)^{n}+\frac{n+2}{2}$

6 (v)

$V_{10}=\frac{1}{8} 3^{10}-\frac{1}{8}(-1)^{10}+\frac{10+2}{2}=7387$ [pups]

7(a) (i)

Kruskal's algorithm
$|F H|=4$
$|H J|=6$
$|C D|=7$
$|I J|=8$
$|C E|=9$
$|K L|=9$
$|C F|=10$
$|I K|=10$
$|A D|=11$
$|E G|=11$
$|E H|=11$
$|G J|=12$
$|F I|=13$
$|H G|=14$
$|B E|=16$
$|B E|=16$

Prim's algorithm

Choose node A, say.
$|A D|=11$
$|C D|=7$
$|C E|=9$
$|C F|=10$
$|F H|=4$
$|H J|=6$
$|I J|=8$
$|I K|=10$
$|L K|=9$
$|E G|=11$
$|B E|=16$

$$
0
$$

6

Deduct 3 marks if the algorithm used is not correctly named.
Allow 3 marks for the name of a correct algorithm if no other work is presented.

7(a) (ii)

$11+7+2(9+11+16)+10+4+6+8+10+9=137$ minutes

7(b) (i)
$\frac{d N}{d t}=k(2000-N)$ so $\int \frac{d N}{2000-N}=\int k d t$
$\ln \frac{1}{2000-N}=k t+c$
$N=250$ when $t=0$ so $c=\ln \frac{1}{1750}$
$\frac{1750}{2000-N}=e^{k t}$ so $N=2000-1750 e^{-k t}$

7(b) (ii)
$N=1500$ when $t=6$ so $1500=2000-1750 e^{-6 k}$, i.e. $k=\frac{\ln 3.5}{6} \cong 0.209$ hour $^{-1}$

7(b) (iii)

8 (i)

At the point of collision, the balls have the same height.
$\therefore 38 \sin 41^{\circ}(3)-\frac{1}{2} g(3)^{2}=u \sin 64^{\circ}(2)-\frac{1}{2} g(2)^{2}$ 5
i.e. $u=27.98 \mathrm{~m} \mathrm{~s}^{-1}$ to 2 decimal places

8 (ii)

$D=38 \cos 41^{\circ}(3)+27.98 \cos 64^{\circ}(2)=86.04+24.53=110.57 \mathrm{~m}$

8 (iii)

$\overrightarrow{v_{P}}(t)=38 \cos 41^{\circ} \vec{\imath}+\left(38 \sin 41^{\circ}-9.8 \times 3\right) \vec{\jmath}=28.68 \vec{\imath}-4.47 \vec{\jmath} \mathrm{~m} \mathrm{~s}^{-1}$
$\overrightarrow{v_{Q}}(t)=-27.98 \cos 64^{\circ} \vec{\imath}+\left(27.98 \sin 64^{\circ}-9.8 \times 2\right) \vec{\jmath}=-12.27 \vec{\imath}+5.55 \vec{\jmath} \mathrm{~m} \mathrm{~s}^{-1}$

8 (iv)
$\overrightarrow{v_{P}} \cdot \overrightarrow{v_{Q}}=(28.68 \vec{\imath}-4.47 \vec{\jmath}) \cdot(-12.27 \vec{\imath}+5.55 \vec{\jmath})=(28.68)(-12.27)+(-4.47)(5.55)$
i.e. $\overrightarrow{v_{P}} \cdot \overrightarrow{v_{Q}}=-376.71$ [units not required]

8 (v)

$\overrightarrow{v_{P}} \cdot \overrightarrow{v_{Q}}=\left|\overrightarrow{v_{P}}\right|\left|\overrightarrow{v_{Q}}\right| \cos \theta$ 5
$\left|\overrightarrow{v_{P}}\right|=29.03$ and $\left|\overrightarrow{v_{Q}}\right|=13.47$ so $\cos \theta=-0.96$, i.e. $\theta=164.44^{\circ}$, i.e. angle $=15.56^{\circ}$ 5

9 (i)

Activity	Depends directly on ...	Activity	Depends directly on ...
A	-	G	B, C
B	-	H	E, F, G
C	-	I	B, C, E
D	A	J	B, C, E
E	A	K	E, F, G
F	C	L	D, J

-1 for each incorrect part A to L

9 (ii)

20 [0/8/14/17]

9 (iii)

A, E, J, L and A, E, K

9 (iv)

10 [0/4/7]

9 (v)

E, F, D, G

10(a) (i)
$U_{1}=1.2(175)-30=180$ [grasshoppers]
$U_{2}=1.2(180)-30=186$ [grasshoppers]

10(a) (ii)

$U_{n+1}=1.2 U_{n}-30$

10(a) (iii)
$U_{n}=a^{n} U_{0}+b\left(\frac{1-a^{n}}{1-a}\right)$ or $U_{n}=C a^{n}+D$
$U_{n}=1.2^{n}(25)+150$

10(a) (iv)

$U_{12}=1.2^{12}(25)+150=373$ [grasshoppers]

10(b) (i)

10(b) (ii)
$E_{A}=\frac{1}{2} m u^{2}=\frac{m k g r}{2}$
$E_{\theta}=\frac{1}{2} m v^{2}+m g(r+r \cos \theta)$
$E_{A}=E_{\theta}$ so $k g r=v^{2}+2 g(r+r \cos \theta)$
$\frac{m v^{2}}{r}=R+m g \cos \theta$
$=m g \cos \theta$ when the car loses contact with the track, i.e. when $R=0$
$v^{2}=g r \cos \theta$ so $k g r=g r \cos \theta+2 g(r+r \cos \theta)=2 g r+3 g r \cos \theta$
$\therefore \cos \theta=\frac{k-2}{3}$ as required

10(b) (iii)

$\cos \theta=1$ so $k=5$

Leaving Certificate, 2023

SI	әэиддәчоэ ॥едәло • sәчэеодdde әл!ұеәл рие әл!̣елоии 	ио!ұрлоий рир ио!ұрכ!ипишоэ
SI	suo!!วәәןәд pue suo!snjวuoכ 	
OS		ssaวoud 万u!\|Iapow ayı
02		чэגраsау рив ио!ээпродии
syuew	ұиәұиоэ әл!ұеכ!рй	иo!ıJas

Higher Level Applied Mathematics Mathematical Modelling Project - Report Structure and Mark Allocations

-ио!ңеиеןдхә ұпочұ!м pəındmos (s)uo! innos	ssəวoıd -uo!̣еиеןdxә ұnouł!м рәұndmos (s)uo! пnos	рәұuәsәдd (s)uo!̣едәұ 	 (s)uo!!nпоs ןеэ! ұешәчдеш 	(syגem 0z) 	
$\begin{gathered} \mathrm{S}-0 \\ \text { د!seq } \mathrm{A} \downarrow \partial \wedge \end{gathered}$	$\begin{gathered} \hline \text { OI -9 } \\ \text { ग!seg } \end{gathered}$	$\begin{gathered} \mathrm{SI}-I I \\ \text { 48noxoy } \end{gathered}$	$\begin{gathered} 0 Z-9 \tau \\ \text { 48noxoył Кィə^ } \end{gathered}$		
-uo!?dunsse fo uo!̣eиеןdxә ou чт!м рәu!!ıno ןәроw	-рәu!!e\|dxә ^ןлоod suo! \ddagger dunnsse pue ןəpow	-рәq!়วsəp Кдеәр suo!?dunsse 'pəu!e\|dxə ॥əм	əроW	-рə!!!!sn! pue pə!!!!uәр! suo!?dunsse 'suo!̣едəч! 	(syגеш st) Kโ! ! Sn ¢ 8 u!pldxヨ
$\begin{gathered} \varepsilon-0 \\ \text { ग!seq Kıə^ } \end{gathered}$	$\begin{aligned} & \angle-\dagger \\ & \text { ग!seg } \end{aligned}$	IT-8 48norou1			
 	-иәуеұәрии әшоs ч!!м məવqoıd ј0 ұиәшәұеұร ग!seg	чЈлеәรәл 'рдериетs poos е до уиом	Ұиеләәдл әдәчм рәұиәгәлd еұер 'рәұ! Ј рие рәłuәsəıd чэлеәรəд 'рә!!!!uәр! səןqе!ıе^ pue məવоıd	(syдеш 0z)	
$\begin{gathered} \mathrm{S}-0 \\ \text { ग!seq } \mathrm{A} \partial \mathrm{\lambda} \end{gathered}$	$\begin{gathered} \text { OL-9 } \\ \text { ग!seg } \end{gathered}$	$\begin{gathered} \mathrm{SI}-I I \\ \text { 48nosoч } \end{gathered}$			

＇әэиәдәчоэ ॥едәло лоод јо әЈиәр！ィə ou ло әןұ？！	＇әЈиәләчоэ ॥еләло 」！ －Ки！и！ұеәлоио！иелоии！ рәұ！！ш！！ч ч！м рәғиәsәдd 	＇әЈиәдәчоэ ॥едәло рооэ чІ！м рәұиәsәлd ıо／рие рәугеолdde ұәә！oıd	॥еләло ұиәןәэхヨ －रem әл！ұеәл эо／рие әл！ұелоии！ КІч®！ч е и！рәұиәsәл⿱ ıo／pue pәyэeoıdde дวə！oıd	（syגew st） ио！ұрлоии
$\varepsilon-0$ ग！seq Кıəへ	$\begin{aligned} & \angle-\rangle \\ & \text { ग!seg } \end{aligned}$	$\begin{gathered} \text { IT - } 8 \\ \text { 48noroч1 } \end{gathered}$		8 ио！ұрэ！ипшшоэ
人luood uo имедр（s）uo！snjpuoo 10 	＇ұวə！odd uo ио！ұวәןғәл рәч！ш！！ 10 имелр （s）иo！snןјиоэ рә！！u！ 1 －рәұuәsəıd sұןnsəд fo ио！ңеұәлdıәди！әшоs	10 имелр（s）uo！snpuos ＇ұхәұиоэ рром－ןеәл е и！słןnsəд јо ио！чеұәлdләұи！poos		（syגew st）
$\begin{gathered} \varepsilon-0 \\ \text { د!seq Кıə^ } \end{gathered}$	$\begin{aligned} & \angle-\downarrow \\ & \text { ग!seg } \end{aligned}$	$\begin{gathered} \text { IT-8 } \\ \text { 48noィ0ч1 } \end{gathered}$		sł｜nsay fo uо！ұрұдıdıału।
－pəłuəsəıd（s）uolinjos	＇s！s＾ןеие до әәиәр！лә әшоs ＇рәұиәsəлd（s）uo！̣n｜os	＇suo！̣еұuәsəıdə」 ןеэ！чделя／ןеэ！ңешәчдеш ＇әןduexə 10f＇પ！！М sənss！ әшоs чт！м ұnq＇pas＾ןeue pue pəұuәsəдd（s）uo！̣njos		（syגem st） аรイןpu甘 8 ұuasaıd
$\begin{gathered} \varepsilon-0 \\ \text { د!seq Кıə } \end{gathered}$	$\begin{aligned} & L-t \\ & \text { ग!seg } \end{aligned}$	$\begin{gathered} I T-8 \\ 48 \text { nox } \end{gathered}$		

N

